Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modifications of the Aerobic Respiratory Chain of Paracoccus Denitrificans in Response to Superoxide Oxidative Stress.

Identifieur interne : 000227 ( Main/Exploration ); précédent : 000226; suivant : 000228

Modifications of the Aerobic Respiratory Chain of Paracoccus Denitrificans in Response to Superoxide Oxidative Stress.

Auteurs : Vojt Ch Sedlá Ek [République tchèque] ; Igor Ku Era [République tchèque]

Source :

RBID : pubmed:31816877

Abstract

Paracoccus denitrificans is a strictly respiring bacterium with a core respiratory chain similar to that of mammalian mitochondria. As such, it continuously produces and has to cope with superoxide and other reactive oxygen species. In this work, the effects of artificially imposed superoxide stress on electron transport were examined. Exposure of aerobically growing cells to paraquat resulted in decreased activities of NADH dehydrogenase, succinate dehydrogenase, and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) oxidase. Concomitantly, the total NAD(H) pool size in cells was approximately halved, but the NADH/NAD+ ratio increased twofold, thus partly compensating for inactivation losses of the dehydrogenase. The inactivation of respiratory dehydrogenases, but not of TMPD oxidase, also took place upon treatment of the membrane fraction with xanthine/xanthine oxidase. The decrease in dehydrogenase activities could be fully rescued by anaerobic incubation of membranes in a mixture containing 2-mercaptoethanol, sulfide and ferrous iron, which suggests iron-sulfur clusters as targets for superoxide. By using cyanide titration, a stress-sensitive contribution to the total TMPD oxidase activity was identified and attributed to the cbb3-type terminal oxidase. This response (measured by both enzymatic activity and mRNA level) was abolished in a mutant defective for the FnrP transcription factor. Therefore, our results provide evidence of oxidative stress perception by FnrP.

DOI: 10.3390/microorganisms7120640
PubMed: 31816877
PubMed Central: PMC6955949


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modifications of the Aerobic Respiratory Chain of Paracoccus Denitrificans in Response to Superoxide Oxidative Stress.</title>
<author>
<name sortKey="Sedla Ek, Vojt Ch" sort="Sedla Ek, Vojt Ch" uniqKey="Sedla Ek V" first="Vojt Ch" last="Sedlá Ek">Vojt Ch Sedlá Ek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ku Era, Igor" sort="Ku Era, Igor" uniqKey="Ku Era I" first="Igor" last="Ku Era">Igor Ku Era</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31816877</idno>
<idno type="pmid">31816877</idno>
<idno type="doi">10.3390/microorganisms7120640</idno>
<idno type="pmc">PMC6955949</idno>
<idno type="wicri:Area/Main/Corpus">000178</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000178</idno>
<idno type="wicri:Area/Main/Curation">000178</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000178</idno>
<idno type="wicri:Area/Main/Exploration">000178</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modifications of the Aerobic Respiratory Chain of Paracoccus Denitrificans in Response to Superoxide Oxidative Stress.</title>
<author>
<name sortKey="Sedla Ek, Vojt Ch" sort="Sedla Ek, Vojt Ch" uniqKey="Sedla Ek V" first="Vojt Ch" last="Sedlá Ek">Vojt Ch Sedlá Ek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ku Era, Igor" sort="Ku Era, Igor" uniqKey="Ku Era I" first="Igor" last="Ku Era">Igor Ku Era</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microorganisms</title>
<idno type="ISSN">2076-2607</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Paracoccus denitrificans</i>
is a strictly respiring bacterium with a core respiratory chain similar to that of mammalian mitochondria. As such, it continuously produces and has to cope with superoxide and other reactive oxygen species. In this work, the effects of artificially imposed superoxide stress on electron transport were examined. Exposure of aerobically growing cells to paraquat resulted in decreased activities of NADH dehydrogenase, succinate dehydrogenase, and
<i>N</i>
,
<i>N</i>
,
<i>N</i>
',
<i>N</i>
'-tetramethyl-p-phenylenediamine (TMPD) oxidase. Concomitantly, the total NAD(H) pool size in cells was approximately halved, but the NADH/NAD
<sup>+</sup>
ratio increased twofold, thus partly compensating for inactivation losses of the dehydrogenase. The inactivation of respiratory dehydrogenases, but not of TMPD oxidase, also took place upon treatment of the membrane fraction with xanthine/xanthine oxidase. The decrease in dehydrogenase activities could be fully rescued by anaerobic incubation of membranes in a mixture containing 2-mercaptoethanol, sulfide and ferrous iron, which suggests iron-sulfur clusters as targets for superoxide. By using cyanide titration, a stress-sensitive contribution to the total TMPD oxidase activity was identified and attributed to the
<i>cbb</i>
<sub>3</sub>
-type terminal oxidase. This response (measured by both enzymatic activity and mRNA level) was abolished in a mutant defective for the FnrP transcription factor. Therefore, our results provide evidence of oxidative stress perception by FnrP.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31816877</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2076-2607</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Microorganisms</Title>
<ISOAbbreviation>Microorganisms</ISOAbbreviation>
</Journal>
<ArticleTitle>Modifications of the Aerobic Respiratory Chain of Paracoccus Denitrificans in Response to Superoxide Oxidative Stress.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E640</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/microorganisms7120640</ELocationID>
<Abstract>
<AbstractText>
<i>Paracoccus denitrificans</i>
is a strictly respiring bacterium with a core respiratory chain similar to that of mammalian mitochondria. As such, it continuously produces and has to cope with superoxide and other reactive oxygen species. In this work, the effects of artificially imposed superoxide stress on electron transport were examined. Exposure of aerobically growing cells to paraquat resulted in decreased activities of NADH dehydrogenase, succinate dehydrogenase, and
<i>N</i>
,
<i>N</i>
,
<i>N</i>
',
<i>N</i>
'-tetramethyl-p-phenylenediamine (TMPD) oxidase. Concomitantly, the total NAD(H) pool size in cells was approximately halved, but the NADH/NAD
<sup>+</sup>
ratio increased twofold, thus partly compensating for inactivation losses of the dehydrogenase. The inactivation of respiratory dehydrogenases, but not of TMPD oxidase, also took place upon treatment of the membrane fraction with xanthine/xanthine oxidase. The decrease in dehydrogenase activities could be fully rescued by anaerobic incubation of membranes in a mixture containing 2-mercaptoethanol, sulfide and ferrous iron, which suggests iron-sulfur clusters as targets for superoxide. By using cyanide titration, a stress-sensitive contribution to the total TMPD oxidase activity was identified and attributed to the
<i>cbb</i>
<sub>3</sub>
-type terminal oxidase. This response (measured by both enzymatic activity and mRNA level) was abolished in a mutant defective for the FnrP transcription factor. Therefore, our results provide evidence of oxidative stress perception by FnrP.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sedláček</LastName>
<ForeName>Vojtěch</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kučera</LastName>
<ForeName>Igor</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GA16-18476S</GrantID>
<Agency>Grantová Agentura České Republiky</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Microorganisms</MedlineTA>
<NlmUniqueID>101625893</NlmUniqueID>
<ISSNLinking>2076-2607</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">FnrP transcription factor</Keyword>
<Keyword MajorTopicYN="N">NADH dehydrogenase</Keyword>
<Keyword MajorTopicYN="N">iron–sulfur cluster</Keyword>
<Keyword MajorTopicYN="N">succinate dehydrogenase</Keyword>
<Keyword MajorTopicYN="N">superoxide</Keyword>
<Keyword MajorTopicYN="N">terminal oxidase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31816877</ArticleId>
<ArticleId IdType="pii">microorganisms7120640</ArticleId>
<ArticleId IdType="doi">10.3390/microorganisms7120640</ArticleId>
<ArticleId IdType="pmc">PMC6955949</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jun;1804(6):1350-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20116460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Sep 25;265(27):16330-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2168888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Sep;6(9):2825-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Mar;178(6):1532-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8626278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Jan 27;43(3):791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14730984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2092-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17267605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2015;69:93-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26070785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1995 Apr 26;1229(2):187-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7727498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2018 Dec;70(12):1214-1221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30428155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2016 Mar;21(1):71-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26790880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2015 Jul 1;125:68-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25976748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2015 Jan;282(2):283-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25332077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Essays Biochem. 2010;47:1-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20533897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 May;261(3):767-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10215894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 22;279(43):44590-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 1996 Nov 7;96(7):2315-2334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11848829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 27;273(9):4897-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9478932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1975 Sep;150(3):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1212205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Apr;268(8):2486-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11298768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1997 Jun 15;246(3):618-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9219517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Oct 25;268(30):22369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8226748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 5;279(45):46580-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2015 Jan 15;566:67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25447814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc R Soc Lond B Biol Sci. 1987 Aug 21;231(1264):339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2888121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2017 Dec;19(12):4953-4964</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29076595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1994 Jul;13(2):183-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jun 9;270(23):13681-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7775420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 1984 Apr;55:37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6329674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Jan 26;32(3):968-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8422400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2010 Jul;156(Pt 7):2006-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2011 Mar;99(3):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21153706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 1990 May;47(5):440-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2159514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1975 Apr 10;254(5500):495-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">235742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Mar;23(5):893-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9076727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2019 Jul;112(1):166-183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30977245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1985 Oct;150(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3843705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Apr 15;266(11):6957-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1849898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Sep;77(17):6133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21742902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1973 Jun;53(2):452-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4351948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Feb;59(4):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Oct 5;262(28):13805-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2820981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Jan;184(2):503-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e42357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22848760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1987 Sep 15;246(3):779-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2825653</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République tchèque</li>
</country>
<region>
<li>Moravie</li>
</region>
<settlement>
<li>Brno</li>
</settlement>
</list>
<tree>
<country name="République tchèque">
<region name="Moravie">
<name sortKey="Sedla Ek, Vojt Ch" sort="Sedla Ek, Vojt Ch" uniqKey="Sedla Ek V" first="Vojt Ch" last="Sedlá Ek">Vojt Ch Sedlá Ek</name>
</region>
<name sortKey="Ku Era, Igor" sort="Ku Era, Igor" uniqKey="Ku Era I" first="Igor" last="Ku Era">Igor Ku Era</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000227 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000227 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31816877
   |texte=   Modifications of the Aerobic Respiratory Chain of Paracoccus Denitrificans in Response to Superoxide Oxidative Stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31816877" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020